1. DUT——router功能概述
1.1管脚图
以router(路由器)为例

1.2输入输出信号
左边是输入:16位的din(数据输入)、16位的frame_n(数据帧有效,低电平有效)、16位的valid_n(有效信号,低电平有效)、reset_n(低电平复位)和clock(时钟)
右边是输出:16位的dout(数据输出)、16位的dout(数据输出)、16位的frameo_n(数据帧输出有效)、16位的valido_n(输出有效信号,低电平有效)
1.3模块功能
16个输入的通道,选一个通道作为输入通道,同样的,16个输出的通道,也是选一个通道作为输出通道,数据是一bit一bit地传输。
例如,选择din[7]为数据的输入通道,所以frame_n[7]和valid_n[7]就是控制信号;选择dout[3]为数据的输出通道,所以frameo_n[3]和valido_n[3]就是控制信号。因此数据会从7号输入通道输入,然后从3号通道输出,路由器的功能就是这么简单。
1.4输入信号协议

din信号
1.din[i]中的i表示从哪路输入,din中的第一段4bit的数据表示输出地址(低位开始),从哪路输出
2.地址传输完毕后拉高进入隔离段
3.隔离段结束后开始传输数据(低位开始)
frame_n信号
1.下降沿指示packet的第一位数据
2.上升沿指示packet的最后一位数据
valid_n信号
1.其在din的地址输入时间段可为任意值x
2.在隔离段pad拉高
3.其拉低时表示数据有效,因此在payload段若其拉高,则din数据无效
4.数据输入完毕后拉高
1.5输出信号协议

输出信号时序图如上,比较简单,当valido_n和frameo_n均为低时数据有效,除了packet最后一位输出数据时frameo_n为高 。
1.6复位信号协议

以上为其复位协议时序图,有以下几点需要注意:
1.复位时,reset_n为低电平,frame_n和valid_n为高电平
2.有效复位至少保持1个clk
3.复位后至少等待15个时钟周期后才可以发送数据
2. 实验代码
2.1 router代码
DUT:router代码如下:
// control pins:
// input: reset_n - active low reset
// input: clock - master clock input
// input port pins:
// input: frame_n - must be active during whole input packet
// input: valid_n - valid data input
// input: di - the data input
// output: busy_n - tells input that connection is busy
// output port pins:
// output: do - the data output
// output: valido_n - tells output device that "do" contain valid data
// output: frameo_n - active during the whole output packet
// frame format:
//
// Frame start must look like this:
//
// frame_n: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ...
// di: | X | A0 | A1 | A2 | A3 | 1 | X | X | X | D0 | ...
// valid_n: | X | X | X | X | X | X | 1 | 1 | 1 | 0/1 | ...
//
// note1: frame_n must deasserted at least one cycle between packets.
// note2: address data does not have to wait for busy_n = 1.
// note3: di must wait for busy_n = 1.
// note4: a di is taken by the chip if: busy_n == 1 && valid_n == 0
// note5: frame_n must be deasserted with the last data bit in the frame.
// note6: once connection is successfully made, busy_n is guaranteed to
// stay inactive until to the end of the current frame.
module router
(
reset_n,
clock,
frame_n,
valid_n,
din,
dout,
busy_n,
valido_n,
frameo_n
);
input reset_n, clock;
input [15:0] din, frame_n, valid_n;
output [15:0] dout, valido_n, busy_n, frameo_n;
wire reset;
wire [15:0] arb0, arb1, arb2, arb3, arb4, arb5, arb6, arb7;
wire [15:0] di;
wire [15:0] arb8, arb9, arb10, arb11, arb12, arb13, arb14, arb15;
wire [15:0] arb_head, okstep;
tri0 [15:0] doint;
tri1 [15:0] valdoint_n, frameoint_n;
reg [15:0] dout, valido_n, frameo_n;
reg [3:0] arb_head_num;
assign di = din;
assign reset = ~reset_n;
assign arb_head = 1 << arb_head_num;
rtslice rts0(reset,clock,frame_n[0],valid_n[0],di[0],
arb0,arb1,arb_head[0],okstep[0],
doint,busy_n[0],valdoint_n,frameoint_n);
rtslice rts1(reset,clock,frame_n[1],valid_n[1],di[1],
arb1,arb2,arb_head[1],okstep[1],
doint,busy_n[1],valdoint_n,frameoint_n);
rtslice rts2(reset,clock,frame_n[2],valid_n[2],di[2],
arb2,arb3,arb_head[2],okstep[2],
doint,busy_n[2],valdoint_n,frameoint_n);
rtslice rts3(reset,clock,frame_n[3],valid_n[3],di[3],
arb3,arb4,arb_head[3],okstep[3],
doint,busy_n[3],valdoint_n,frameoint_n);
rtslice rts4(reset,clock,frame_n[4],valid_n[4],di[4],
arb4,arb5,arb_head[4],okstep[4],
doint,busy_n[4],valdoint_n,frameoint_n);
rtslice rts5(reset,clock,frame_n[5],valid_n[5],di[5],
arb5,arb6,arb_head[5],okstep[5],
doint,busy_n[5],valdoint_n,frameoint_n);
rtslice rts6(reset,clock,frame_n[6],valid_n[6],di[6],
arb6,arb7,arb_head[6],okstep[6],
doint,busy_n[6],valdoint_n,frameoint_n);
rtslice rts7(reset,clock,frame_n[7],valid_n[7],di[7],
arb7,arb8,arb_head[7],okstep[7],
doint,busy_n[7],valdoint_n,frameoint_n);
rtslice rts8(reset,clock,frame_n[8],valid_n[8],di[8],
arb8,arb9,arb_head[8],okstep[8],
doint,busy_n[8],valdoint_n,frameoint_n);
rtslice rts9(reset,clock,frame_n[9],valid_n[9],di[9],
arb9,arb10,arb_head[9],okstep[9],
doint,busy_n[9],valdoint_n,frameoint_n);
rtslice rts10(reset,clock,frame_n[10],valid_n[10],di[10],
arb10,arb11,arb_head[10],okstep[10],
doint,busy_n[10],valdoint_n,frameoint_n);
rtslice rts11(reset,clock,frame_n[11],valid_n[11],di[11],
arb11,arb12,arb_head[11],okstep[11],
doint,busy_n[11],valdoint_n,frameoint_n);
rtslice rts12(reset,clock,frame_n[12],valid_n[12],di[12],
arb12,arb13,arb_head[12],okstep[12],
doint,busy_n[12],valdoint_n,frameoint_n);
rtslice rts13(reset,clock,frame_n[13],valid_n[13],di[13],
arb13,arb14,arb_head[13],okstep[13],
doint,busy_n[13],valdoint_n,frameoint_n);
rtslice rts14(reset,clock,frame_n[14],valid_n[14],di[14],
arb14,arb15,arb_head[14],okstep[14],
doint,busy_n[14],valdoint_n,frameoint_n);
//rtslicef rts15(reset,clock,frame_n[15],valid_n[15],di[15],
// arb15,arb0,arb_head[15],okstep[15],
// doint,busy_n[15],valdoint_n,frameoint_n);
rtslice rts15(reset,clock,frame_n[15],valid_n[15],di[15],
arb15,arb0,arb_head[15],okstep[15],
doint,busy_n[15],valdoint_n,frameoint_n);
always @(posedge reset) begin
arb_head_num <= 4'b0;
end
always @(posedge clock) begin
dout <= doint;
valido_n <= valdoint_n;
frameo_n <= frameoint_n;
if (reset == 1'b0) begin
if (okstep[arb_head_num] == 1'b1)
arb_head_num <= arb_head_num + 1;
end
end
endmodule //router
module rtslice
(
reset,
clock,
frame_n,
valid_n,
din,
iarbin,
arbout,
arbhead,
okstep,
dout,
busy_n,
valido_n,
frameo_n
);
input reset,clock,frame_n,valid_n,din, arbhead;
output busy_n,okstep;
input [15:0] iarbin;
output [15:0] arbout,dout,valido_n;
inout [15:0] frameo_n;
reg [4:0] addrsf, addrsel;
reg [5:0] addrfsr;
reg din1, busy_n, frame1_n, frame2_n, vald1_n, arbena;
wire [15:0] dout;
wire [15:0] arbin;
wire busy1_n;
wire [4:0] addrsel_g;
reg [3:0] i;
assign arbin = (arbhead == 1'b1) ? 16'hffff : iarbin;
assign addrsel_g = (arbena == 1'b1) ? addrsel : 5'h0;
// always @ ( posedge clock)
// begin
assign dout[0] =
(addrsel_g == 5'h10 && arbin[0] == 1'b1) ? din1 : 1'bZ;
// end
assign dout[1] =
(addrsel_g == 5'h11 && arbin[1] == 1'b1) ? din1 : 1'bZ;
assign dout[2] =
(addrsel_g == 5'h12 && arbin[2] == 1'b1) ? din1 : 1'bZ;
assign dout[3] =
(addrsel_g == 5'h13 && arbin[3] == 1'b1) ? din1 : 1'bZ;
assign dout[4] =
(addrsel_g == 5'h14 && arbin[4] == 1'b1) ? din1 : 1'bZ;
assign dout[5] =
(addrsel_g == 5'h15 && arbin[5] == 1'b1) ? din1 : 1'bZ;
assign dout[6] =
(addrsel_g == 5'h16 && arbin[6] == 1'b1) ? din1 : 1'bZ;
assign dout[7] =
(addrsel_g == 5'h17 && arbin[7] == 1'b1) ? din1 : 1'bZ;
assign dout[8] =
(addrsel_g == 5'h18 && arbin[8] == 1'b1) ? din1 : 1'bZ;
assign dout[9] =
(addrsel_g == 5'h19 && arbin[9] == 1'b1) ? din1 : 1'bZ;
assign dout[10] =
(addrsel_g == 5'h1a && arbin[10] == 1'b1) ? din1 : 1'bZ;
assign dout[11] =
(addrsel_g == 5'h1b && arbin[11] == 1'b1) ? din1 : 1'bZ;
assign dout[12] =
(addrsel_g == 5'h1c && arbin[12] == 1'b1) ? din1 : 1'bZ;
assign dout[13] =
(addrsel_g == 5'h1d && arbin[13] == 1'b1) ? din1 : 1'bZ;
assign dout[14] =
(addrsel_g == 5'h1e && arbin[14] == 1'b1) ? din1 : 1'bZ;
assign dout[15] =
(addrsel_g == 5'h1f && arbin[15] == 1'b1) ? din1 : 1'bZ;
assign frameo_n[0] =
(addrsel_g == 5'h10 && arbin[0] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[1] =
(addrsel_g == 5'h11 && arbin[1] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[2] =
(addrsel_g == 5'h12 && arbin[2] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[3] =
(addrsel_g == 5'h13 && arbin[3] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[4] =
(addrsel_g == 5'h14 && arbin[4] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[5] =
(addrsel_g == 5'h15 && arbin[5] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[6] =
(addrsel_g == 5'h16 && arbin[6] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[7] =
(addrsel_g == 5'h17 && arbin[7] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[8] =
(addrsel_g == 5'h18 && arbin[8] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[9] =
(addrsel_g == 5'h19 && arbin[9] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[10] =
(addrsel_g == 5'h1a && arbin[10] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[11] =
(addrsel_g == 5'h1b && arbin[11] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[12] =
(addrsel_g == 5'h1c && arbin[12] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[13] =
(addrsel_g == 5'h1d && arbin[13] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[14] =
(addrsel_g == 5'h1e && arbin[14] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[15] =
(addrsel_g == 5'h1f && arbin[15] == 1'b1) ? frame1_n : 1'bZ;
assign valido_n[0] =
(addrsel_g == 5'h10 && arbin[0] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[1] =
(addrsel_g == 5'h11 && arbin[1] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[2] =
(addrsel_g == 5'h12 && arbin[2] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[3] =
(addrsel_g == 5'h13 && arbin[3] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[4] =
(addrsel_g == 5'h14 && arbin[4] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[5] =
(addrsel_g == 5'h15 && arbin[5] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[6] =
(addrsel_g == 5'h16 && arbin[6] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[7] =
(addrsel_g == 5'h17 && arbin[7] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[8] =
(addrsel_g == 5'h18 && arbin[8] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[9] =
(addrsel_g == 5'h19 && arbin[9] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[10] =
(addrsel_g == 5'h1a && arbin[10] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[11] =
(addrsel_g == 5'h1b && arbin[11] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[12] =
(addrsel_g == 5'h1c && arbin[12] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[13] =
(addrsel_g == 5'h1d && arbin[13] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[14] =
(addrsel_g == 5'h1e && arbin[14] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[15] =
(addrsel_g == 5'h1f && arbin[15] == 1'b1) ? vald1_n : 1'bZ;
assign arbout[0] =
(addrsel_g != 5'h10 && arbin[0] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[1] =
(addrsel_g != 5'h11 && arbin[1] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[2] =
(addrsel_g != 5'h12 && arbin[2] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[3] =
(addrsel_g != 5'h13 && arbin[3] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[4] =
(addrsel_g != 5'h14 && arbin[4] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[5] =
(addrsel_g != 5'h15 && arbin[5] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[6] =
(addrsel_g != 5'h16 && arbin[6] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[7] =
(addrsel_g != 5'h17 && arbin[7] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[8] =
(addrsel_g != 5'h18 && arbin[8] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[9] =
(addrsel_g != 5'h19 && arbin[9] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[10] =
(addrsel_g != 5'h1a && arbin[10] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[11] =
(addrsel_g != 5'h1b && arbin[11] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[12] =
(addrsel_g != 5'h1c && arbin[12] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[13] =
(addrsel_g != 5'h1d && arbin[13] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[14] =
(addrsel_g != 5'h1e && arbin[14] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[15] =
(addrsel_g != 5'h1f && arbin[15] == 1'b1) ? 1'b1 : 1'b0;
assign busy1_n = (arbout != arbin) ? 1'b1 : ~addrsel[4];
assign okstep = (arbout == arbin) ? 1'b1 : 1'b0;
always @(posedge reset) begin
if (reset == 1'b1) begin
addrsel <= 5'b0;
addrfsr <= 6'b0;
arbena <= 1'b0;
end
end
always @(posedge clock) begin
frame1_n <= frame_n;
frame2_n <= frame1_n;
busy_n <= busy1_n;
din1 <= din;
vald1_n <= valid_n | ~busy_n ;
if (reset == 1'b0) begin
if (frame2_n != frame1_n && frame1_n == 1'b1) begin // frame is now inactive
addrsel <= 5'b0; // clear the address register
addrfsr <= 6'b0; // clear the address flag reg.
arbena <= 1'b0;
end
else begin
if (addrsel[4] == 1'b1 && frameo_n[addrsel[3:0]] == 1'b1)
arbena <= 1'b1;
end
if (frame1_n != frame_n && frame_n == 1'b0)
addrfsr <= 6'b11_1111;
if (addrfsr[5:4] == 2'b10)
addrsel <= {addrsf[0],addrsf[1],addrsf[2],addrsf[3],addrsf[4]};
if (addrfsr[4] == 1'b1) addrsf <= (addrsf << 1) | { 4'b0, din1 };
if (addrfsr[5] == 1'b1) addrfsr <= addrfsr << 1;
end
end
endmodule //rtslice
module rtslicef
(
reset,
clock,
frame_n,
valid_n,
din,
iarbin,
arbout,
arbhead,
okstep,
dout,
busy_n,
valido_n,
frameo_n
);
input reset,clock,frame_n,valid_n,din, arbhead;
output busy_n,okstep;
input [15:0] iarbin;
output [15:0] arbout,dout,valido_n;
inout [15:0] frameo_n;
reg [4:0] addrsf, addrsel;
reg [5:0] addrfsr;
reg din1, busy_n, frame1_n, frame2_n, vald1_n, arbena;
wire [15:0] dout;
wire [15:0] arbin;
wire busy1_n;
wire [4:0] addrsel_g;
assign arbin = (arbhead == 1'b1) ? 16'hffff : iarbin;
assign addrsel_g = (arbena == 1'b1) ? addrsel : 5'h0;
assign dout[0] =
(addrsel_g == 5'h10 && arbin[0] == 1'b1) ? din1 : 1'bZ;
assign dout[1] =
(addrsel_g == 5'h11 && arbin[1] == 1'b1) ? din1 : 1'bZ;
assign dout[2] =
(addrsel_g == 5'h12 && arbin[2] == 1'b1) ? din1 : 1'bZ;
assign dout[3] =
(addrsel_g == 5'h13 && arbin[3] == 1'b1) ? din1 : 1'bZ;
assign dout[4] =
(addrsel_g == 5'h14 && arbin[4] == 1'b1) ? din1 : 1'bZ;
assign dout[5] =
(addrsel_g == 5'h15 && arbin[5] == 1'b1) ? din1 : 1'bZ;
assign dout[6] =
(addrsel_g == 5'h16 && arbin[6] == 1'b1) ? din1 : 1'bZ;
assign dout[7] =
(addrsel_g == 5'h17 && arbin[7] == 1'b1) ? din1 : 1'bZ;
// stuck at x
assign dout[8] =
// (addrsel_g == 5'h18 && arbin[8] == 1'b1) ? din1 : 1'bZ;
(addrsel_g == 5'h18 && arbin[8] == 1'b1) ? 1'bx : 1'bZ;
assign dout[9] =
(addrsel_g == 5'h19 && arbin[9] == 1'b1) ? din1 : 1'bZ;
assign dout[10] =
(addrsel_g == 5'h1a && arbin[10] == 1'b1) ? din1 : 1'bZ;
assign dout[11] =
(addrsel_g == 5'h1b && arbin[11] == 1'b1) ? din1 : 1'bZ;
assign dout[12] =
(addrsel_g == 5'h1c && arbin[12] == 1'b1) ? din1 : 1'bZ;
assign dout[13] =
(addrsel_g == 5'h1d && arbin[13] == 1'b1) ? din1 : 1'bZ;
assign dout[14] =
(addrsel_g == 5'h1e && arbin[14] == 1'b1) ? din1 : 1'bZ;
assign dout[15] =
(addrsel_g == 5'h1f && arbin[15] == 1'b1) ? din1 : 1'bZ;
assign frameo_n[0] =
(addrsel_g == 5'h10 && arbin[0] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[1] =
(addrsel_g == 5'h11 && arbin[1] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[2] =
(addrsel_g == 5'h12 && arbin[2] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[3] =
(addrsel_g == 5'h13 && arbin[3] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[4] =
(addrsel_g == 5'h14 && arbin[4] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[5] =
(addrsel_g == 5'h15 && arbin[5] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[6] =
(addrsel_g == 5'h16 && arbin[6] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[7] =
(addrsel_g == 5'h17 && arbin[7] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[8] =
(addrsel_g == 5'h18 && arbin[8] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[9] =
(addrsel_g == 5'h19 && arbin[9] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[10] =
(addrsel_g == 5'h1a && arbin[10] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[11] =
(addrsel_g == 5'h1b && arbin[11] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[12] =
(addrsel_g == 5'h1c && arbin[12] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[13] =
(addrsel_g == 5'h1d && arbin[13] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[14] =
(addrsel_g == 5'h1e && arbin[14] == 1'b1) ? frame1_n : 1'bZ;
assign frameo_n[15] =
(addrsel_g == 5'h1f && arbin[15] == 1'b1) ? frame1_n : 1'bZ;
assign valido_n[0] =
(addrsel_g == 5'h10 && arbin[0] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[1] =
(addrsel_g == 5'h11 && arbin[1] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[2] =
(addrsel_g == 5'h12 && arbin[2] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[3] =
(addrsel_g == 5'h13 && arbin[3] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[4] =
(addrsel_g == 5'h14 && arbin[4] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[5] =
(addrsel_g == 5'h15 && arbin[5] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[6] =
(addrsel_g == 5'h16 && arbin[6] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[7] =
(addrsel_g == 5'h17 && arbin[7] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[8] =
(addrsel_g == 5'h18 && arbin[8] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[9] =
(addrsel_g == 5'h19 && arbin[9] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[10] =
(addrsel_g == 5'h1a && arbin[10] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[11] =
(addrsel_g == 5'h1b && arbin[11] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[12] =
(addrsel_g == 5'h1c && arbin[12] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[13] =
(addrsel_g == 5'h1d && arbin[13] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[14] =
(addrsel_g == 5'h1e && arbin[14] == 1'b1) ? vald1_n : 1'bZ;
assign valido_n[15] =
(addrsel_g == 5'h1f && arbin[15] == 1'b1) ? vald1_n : 1'bZ;
assign arbout[0] =
(addrsel_g != 5'h10 && arbin[0] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[1] =
(addrsel_g != 5'h11 && arbin[1] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[2] =
(addrsel_g != 5'h12 && arbin[2] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[3] =
(addrsel_g != 5'h13 && arbin[3] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[4] =
(addrsel_g != 5'h14 && arbin[4] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[5] =
(addrsel_g != 5'h15 && arbin[5] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[6] =
(addrsel_g != 5'h16 && arbin[6] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[7] =
(addrsel_g != 5'h17 && arbin[7] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[8] =
(addrsel_g != 5'h18 && arbin[8] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[9] =
(addrsel_g != 5'h19 && arbin[9] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[10] =
(addrsel_g != 5'h1a && arbin[10] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[11] =
(addrsel_g != 5'h1b && arbin[11] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[12] =
(addrsel_g != 5'h1c && arbin[12] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[13] =
(addrsel_g != 5'h1d && arbin[13] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[14] =
(addrsel_g != 5'h1e && arbin[14] == 1'b1) ? 1'b1 : 1'b0;
assign arbout[15] =
(addrsel_g != 5'h1f && arbin[15] == 1'b1) ? 1'b1 : 1'b0;
assign busy1_n = (arbout != arbin) ? 1'b1 : ~addrsel[4];
assign okstep = (arbout == arbin) ? 1'b1 : 1'b0;
always @(posedge reset) begin
if (reset == 1'b1) begin
addrsel <= 5'b0;
addrfsr <= 6'b0;
arbena <= 1'b0;
end
end
always @(posedge clock) begin
frame1_n <= frame_n;
frame2_n <= frame1_n;
busy_n <= busy1_n;
din1 <= din;
vald1_n <= valid_n | ~busy_n ;
if (reset == 1'b0) begin
if (frame1_n != frame_n && frame_n == 1'b0)
addrfsr <= 6'b11_1111;
if (frame2_n != frame1_n && frame1_n == 1'b1) begin // frame is now inactive
addrsel <= 5'b0; // clear the address register
addrfsr <= 6'b0; // clear the address flag reg.
arbena <= 1'b0;
end
else begin
if (addrsel[4] == 1'b1 && frameo_n[addrsel[3:0]] == 1'b1)
arbena <= 1'b1;
end
if (addrfsr[5:4] == 2'b10)
addrsel <= {addrsf[0],addrsf[1],addrsf[2],addrsf[3],addrsf[4]};
if (addrfsr[4] == 1'b1) addrsf <= (addrsf << 1) | { 4'b0, din1 };
if (addrfsr[5] == 1'b1) addrfsr <= addrfsr << 1;
end
end
endmodule //rtslicef
2.2 tb代码
//********************************** stimulator **********************************//
module rt_stimulator(
input clock
,input reset_n
,output logic [15:0] din
,output logic [15:0] frame_n
,output logic [15:0] valid_n
,input [15:0] dout
,input [15:0] valido_n
,input [15:0] busy_n
,input [15:0] frameo_n
);
//for debug purpose from waveform //定义检测状态的变量
typedef enum {DRV_RESET,DRV_IDLE,DRV_ADDR,DRV_PAD,DRV_DATA} drv_state_t;
drv_state_t dbg_state;
byte unsigned dbg_din_chnl0_data;
initial begin : drive_reset_proc //reset阶段,复位时,reset_n为低电平,frame_n和valid_n为高电平
@(negedge reset_n);
dbg_state <= DRV_RESET;
din <= 0;
frame_n <= 1;
valid_n <= 1;
end
// drive chaannel 0 - chanel 15 (din[15:0])定义数据输出地址及数据
bit [3:0] addr;
byte unsigned data[];
initial begin : drive_chnl0_proc
@(negedge reset_n);
repeat(10) @(posedge clock);//延迟10个时钟周期
addr = 3; //从第3位输出
data = '{8'h33,8'h77};
// drive address phase 输入地址位阶段
for(int i=0;i<4;i++)begin //4 clock
@(posedge clock);
dbg_state <=DRV_ADDR;
din[0] <= addr[i];
valid_n[0] <= $urandom_range(0,1); //valid_n在din的地址输入时间段可为任意值x
frame_n[0] <= 1'b0; //frame_n需要为低
end
// drive pad phase //隔离阶段
for (int i=0;i<5;i++)begin //5 clock
@(posedge clock);
dbg_state <=DRV_PAD;
din[0] <= 1'b1;
valid_n[0] <= 1'b1; //valid_n需为高电平
frame_n[0] <= 1'b0; //frame_n需为低电平
end
// drive data phase 传输数据阶段
foreach(data[id])begin
for(int i=0;i<8;i++)begin
@(posedge clock);
dbg_state <=DRV_DATA;
dbg_din_chnl0_data <= data[id];
din[0] <= data[id][i];
valid_n[0] <=1'b0;
frame_n <= (id == data.size()-1 && i == 7) ? 1'b1 : 1'b0;//packet最后一位输出数据时frameo_n为高
end
end
// drive idle phase 闲置(没有数据传输)阶段
@(posedge clock);
dbg_state <=DRV_IDLE;
dbg_din_chnl0_data <= 0;
din[0] <= 1'b0;
valid_n[0] <= 1'b1;
frame_n <= 1'b1;
end
endmodule
//********************************** tb **********************************//
module lab3tb;
bit clk,rstn;
logic [15:0] din, frame_n, valid_n;
logic [15:0] dout, valido_n, busy_n, frameo_n;
// 产生时钟,周期为10ns
initial
forever #5ns clk <= !clk;
// 产生复位信号
initial begin
#2ns rstn <= 1;
#10ns rstn <= 0;
#10ns rstn <= 1;
end
//例化router为DUT
router dut(
.reset_n(rstn),
.clock(clk),
.* //其余端口名称均相同
);
//例化stimulator
rt_stimulator stim(
.reset_n(rstn),
.clock(clk),
.*
);
endmodule
3. 仿真结果

另,关于vim编辑器

4. 初步TestBench平台概览
